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1.1 Introduction

Statistics is the study of uncertainty: how to measure it,
and what to do about it.

Uncertainty is a state of incomplete or imperfect
information about something of interest to vou, for example
W@;’%‘i@% = ? .

the percentagé 0,0f the deer who live on the UCSC

campus as of 33 2006 Who have chronic
wasting disease. ; fa 9

I notice that I don’t know the value of & exactly; I have the

impression that 9 is rather small, since the deer on campus

seem relatively healthy, but T have substantial uncertainty
about its precise value.

I can reduce my uncertainty by gathermgdata on the
disease status of campus deer; how should this
data-gathering be done?

The set

= {the deer who Eive on the UCSC campus

is an example of a population: a collection of subjects or
elements (in this case, deer) of interest to me.

There is an aspect of each of these population subjects that
I'm curious about: if I encountered one of these deer, the
question I would ask is “Does this deer have chromc
wasting disease or not?”

Things that can be measured on population subjects are
called variables: in this case the variable of interest takes on
only two values, {yes, no} (such variables are called

dlchotomous or binary). |
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Populations and Samples;
Parameters and Statistics (Estin

We'll see soon that a handy way to work with dichotomous
variables is to assign 1 and 0 to their two possible values
(hence the term binary); for example, with the variable
(chronic wasting disease or not) the coding (1 = ves, 0
= no) is particularly useful.

:ates}

A numerical summary of a population is called a
parameter; 6 is an example of cne possible parameter of
interest about the population P above (others might include
the average weight of the deer who are more than three
months old).

If I had enough time and money (and a way of ensuring
that I could find all the deer and mark them uniquely, so
- that I didn't double-count any individual), in principle I
could perform a complete census of the entire population,
obtaining the disease status for each individual, and at the
end of this census I would no longer have any uncertainty
about the parameter 0.

In practice people rarely have encugh time and money to
perform a complete census of a population P; instead it’s
natural to choose a subset S.0f P and evaluate the
variable(s) of interest only on th&;{pulation subjects in

‘ the subset. %

Such a subset is called a sample from the population P — if
the sample is chosen well, it seems like a good idea to use
the data in the sample to make an estimate of (an educated
guess at) the population parameter 6 of interest.

An estimate 0 of a population parameter @ is also sometimes
called a statistic.

-®




Populations and Samples

Let's et N stand for the number of subjects in the
population 7, and n denote the number of subjects in the
sample S.

Then both the population and the sample can be thought
of as data sets, which can be further visualized as

rectangular tables* with one row for each subject and one
commn for each variable, as in the following dzagmm

mEad 8- T cy N e e

In this class we'll be looking a lot at diagrams like this one:

such diagrams are the basis of both probability models and

statistical models, both of which are crucial to the process
of quantifying uncertainty.

To fill out a diagram like this I need to specify the
following ingredients:

e In the box above the population data set P I describe the
subjects in P by saying to myself “There’'s one row in the
population for each " and filling in the blank; for
example, here there's one row for each deer living on the
Santa Cruz campus on 31 December 2006.

*Math note: the official name for such a rectangular table is

a matrix.
NO)



Random Sampling

e Above each column in the population data set I write the
name of the variable summarized by that column (in this
part of the class we'll typically work with only one variable
at a time); here the variable of interest is the answer to the
guestion (chronic wasting disease?).

e [ identify the number N of subjects in the population if I
know it (here I'm not sure how many deer there are on the
UCSC campus in December 2006, soO IJust put a
question mark).

e 1 hen I do the same three things for the sample data set:
in the box above & I describe the subjects in the sample
(here I might just say “the observed deer”); above each

column in the sample data set [ write the name of the
variable summarized by that column (this will be the same
as in the population); and I identify the number n of
subjects in the sample if I know it (here we haven't yet

talked about how large the sample should be, so again 1

just put a question mark).

There's one crucial thing about this concept of using the
sample data to estimate a parameter of interest in the
population: I said above that this is a good idea “if the
sample is chosen well,” and we need to figure out what
this means.

Evidently, if the sample is to serve as a good stand-in for

the rest of the population, the basic principle we want to

follow is to try to make the sample and the unsample (the

part of the population not chosen in the sample) as similar
as possible in all relevant ways.

The simplest way to achieve this goal turns out to be to
draw the sample at random from the population (so
that all subsets have an equal chance of being chosen).
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So the last (and perhaps most crucial) step in filling out the
diagram above is as follows:

e Finally, in the circle above the arrow from the population
- to the sample I describe the sampling method
(in this case, random).

To literally take a random sample of size n of deer from
P, you'd have 1o

(a) make a list of all the population subjects (deer), with
unigue identifying tags,;

(b) choose n of these tags at random (using, for example,
pseudo-random numbers generated by computer) without
replacement (the sampling method at random without
replacement is called simple random sampling (SRS), as
opposed to at random with replacement, which is called
independent identically distributed (IID*) sampling); and

(c) measure the variables of interest on the sampled deer by
finding the ones with the chosen tags. |

In practice people would often instead use a simpler method
that’s not literally SRS (for example, if the deer were well
distributed spatially, you could partition the UCSC campus
into n non-overlapping and exhaustive spatial subsets and

have n people each get data on the first deer they
encounter in their subset on a given day) and then argue
that their S|mpler method was like what you would get
with SRS.

IID is a term not mentioned in Triola &

G

*Textbook note:
Triola.




1.2 Data Types

It’s useful to have a classification of the various types of
data that variables can keep track of (because some
methods of analysis are definitely not appropriate for some
data types).

Example 1:| Genetic phenotype. Eye color in an animal

you're studying may take on only two values (brown, blue)

that have no unique place on the number line (earlier we

called such variables dichotomous or binary); similarly, hair

color might take on four values (predominately brown,
black, red or white).

Variables like this are said to . occur on a nominal scale of
measurement (so dichotomous variables with values like {yes,
no} are special cases of nominal variables).

Example 2:| Success in running a maze might
be recorded

1 (very slow), 2 (slow), 3 (moderate), 4 (fast),
5 (very fast)

There are still no unique places on the number line for
such values, but (unlike example 1) there's a natural
ordering to these vatues.

Variables like this are said to occur on an ordinal scale.

Some other names for nominal and ordinal variables are
qualitative and categorical.




Types (continued)

Data

Example 3:! Size of a plant. Two measures of the size of

a plant (which, in turn, is a measure of its competitiveness)
would inciude its height (in centimeters (cm)) and the
: number of leaves it has.

Unlike the situations in Examples 1 and 2, the values taken
on by these variables do have unique places on the
number line, and in fact there are two important
characteristics of the numerical values of these variables:

(a) there is a constant size interval between any adjacent
units on the measurement scale, so that the concept of 1
unit means the same thing anywhere on the scale (for
example, plants 4, B, C and D are (respectively) 14, 15, 62,
and 63 cm high; the amount by which B is taller than A is
the same as the amount by which D is tatler than C); and

(b) there is a true zero on the measurement scale with a
direct physical meaning — this allows us to make
meaningful statements about ratios (for example, plant C' is

62Ccm _-_ i
teem = 41 times taller than plant B).

Variables like this are said to occur on a ratio scale.

Example 4:| Growing temperature at which a plant

produces the most buds. Temperature (measured either in

°C or °F) does have a constant size interval but lacks a
true zero, so (contrary to statements you see in the
newspaper or on TV) when it's 80°F outside you can’t
correctly say that it's twice as hot as when it's 40°F.

~ Variables like this are said to occur on an interval scale.




Data Types éC@ﬂ“ﬂﬂ ved )

Some other names for ratio and interval variables are
guantitative and numerical.

One last distinction: | plant height and number of leaves

are different in that with plant height, conceptually (with

finer and finer measuring instruments) there are no possible

gaps between the possible values, whereas with number

of leaves, distinct structural gaps exist (it doesn't make
sense to talk about 4% leaves).

Quantitative variables with gaps between the possible values
are called discrete; quantitative variables with no
conceptual gaps between the possible values
are called continuous.

Why these distinctions matter. | Suppose I choose to

code the age of some animals I'm observing in the following
way, when storing the values of this variable in a computer:

fess than 1 yvear old = 0, between 1 and 2 vears old = 1,
between 2 and 3 vears old = 2, between 3 and 4 years
old = 3, ...

Suppose further that I choose to code the hair color of
these animals in the following way:

brown = 0O, black = 1, red = 2, white = 3

Here’s the data set I get (written, to save space, in a
transposed fashion in relation to the convention on page 5
above: here the rows are the variables and the columns are
the subjects (animals)):

Mean

Animal Identifier || 45 | 333 | 167 | 2| --- |'B0O1 || 243.9
Age 2 0 1 1 --- 3 1.7

Hair Color 0 2 3 20 --- 1 1.2
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Methods

As we'll soon discuss, it's sometimes both useful and
meaningful to summarize a variable by taking its mean
(just add 'em up and divide by how many there are); the
computer has done this for us in the table above in the

final column.

The problem is, of coUrse, that the mean is meaningful
only for the age variable (because it's quantitative [ratio,
discrete]; the other two variables are qualitative [nominal}).

The point:| The right way to analyze a variable often
depends on the scale on which it's measured.

1.3.1 Graphical descriptive methods. | Exampile:

butterfly wing lengths. Zar (1999) gives data from a
sample of n = 24 immature monarch butterfiies, in which the
variable of interest (we might call it y; T&T would call it z)

is wing length (in cm):

3.6 4.13.33.53.8454.34.34.04.1 3.6
04.03.83.83942424.13.7394.03.9
(This is just shorthand for a data set with n = 24 rows
(subjects = butterflies) and 1 column (variable = wing

length), written in this manner to save space.)

How might we summarize this variable in a way that would
allow us to see patterns (graphical summaries) and to
capture most of the information it contains in fewer

than 24 numbers (numerical summaries)?
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istribution

Frequency D

As long as the order in which the data values were listed
above is not relevant, the first step would be to sort the
data from smallest to largest:

3.33.53.6363.73.838383.939394.0
4.04.04.04.14.14.1424243434.445

Now we can see that there are a number of duplicate
values (caused by rounding the wing length measurement

to the nearest cm).

This suggests a further summary in which we keep track of
the values of the variable and the raw frequencies (the
numbers of times those values are attained):

Value | Freguency

w
W

PR WWWWLW

I P RPNNWSBEWWRERENRFO M

24

3l
f-'-
=
3

This is called a raw frequency distribution (or
frequency table) for the variable y (sometimes people just
refer to the distribution of y, or ask "How is y
distributed?"” ).
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Raw Frequency Histogram

The table on the previous page is not as easy to absorb as
it would be if we could display it graphically.

Since it has two columns or dimensions, it's natural to
make a plot in which one dimension (horizontal, say) is the
values the variable takes on and the other (vertical, say) is

the raw frequencies — the resulting graph is a (raw
frequency) histogram of the variable y:

Frequency (f;)

Figure 3.1 A histogram of the data in
Example 3.2. The mean (3.96 cm) is the
center of gravity of the histogram, and the
median (3.975 ¢m) divides the histégram

3 34 35 36 4.7 38 38 40 47 42 43 44 45
Wing Length (X;) incm into two equal areas.

A histogram is a special case of a bar graph: a plot with
locations identified along the horizontal axis corresponding
to values a variable takes on and bars over those locations
with heights give by the (raw) frequencies of those values,

A bar graph can be drawn as a summary of any qualitative
(nominal or ordinal) variable; there is no unique place
called “ves" or “red” on the number line, but you can just
innvent arbitrary horizontal locations and make a useful
plot anyway.

Strictly speaking, what makes a histogram a histogram is
that the variable in question is quantitative (so that the
values do have unique locations on the number line) —
histograms can be made for either discrete or
continuous variables.




lore Graphical

xamples

EXAMPLE i.1 The location of sparrow nests. A frequency table of noininal data.

Number of
Nest site nests observed
A. Vines 56
B. Building eaves GG
C. Low trec braaches 46
D. Tree and building cavitics 49

Number of Nests

A B C D
" Nest Site

Figure .1 A bar graph of the sparrow
nest data of Example 1.1. An example of a
bar graph for nominal data.

EXAMPLE 1.2 Numbers of sunfish, tabutated according to amoeunt of biack pigmeniation. A fre-

quency table of ordinal data.

Pigmentation
elass Amount of pigmentation  Number of fish
0 No black pigmentation 13
i Faintly speckled 68
2 Moderately speckled 44
3 Heavily speckied 21
4 Solid black pigmentation 8

Number of Fish

o 1 2 3 4
Pigmentation Class

Figure ‘1.3 A bar graph of the sunfish
pigmentation data of Example 1.2.- An
example of a bar graph for ordinal data,

- (g



les (continue

Graphical

EXAMPLE 1.3 Frequency of accurrence of various litter sizes in foxes. A frequency table of discrete,
ratio-scale data. '
Litter size Freguency

10
27
22
4
1

=1 On Lh B L

30

Number of Litters

Figure 1.4 A bar graph of the fox litter
data of Example 1.3. An examplie of a bar
Litter Size graph [or disceete, ratio-scale data.

EXAMPLE 1.4a Number of aphids observed per clover plant. A frequency table of discrete,
ratie-scale data.
Number of aphids Number of Number of aphids Number of
on a plani plants observed on a plant plants observed

0 3 20 17

L ; 21 18

2 I 22 23

3 ] 23 17

4 2 24 [9

5 3 25 IR

6 5 26 19

7 7 27 21

8 8 28 I8

B 11 29 13

13 16 30 [0

11 11 3t 4

12 13 32 9

13 12 33 10

14 16 34 8

15 13 35 5

16. 14 36 4

17 16 37 I

18 15 38 2

19 14 39 I

40 0

41 I

Total number of observations = 424
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Examples (continued)

EXAMPLE 1d4b Number of aphids observed per clover plant. A frequency table grouping ihe
discrete, ratio-scale data of Example 1.4a.
Number of aphids Number of
ort a plant plants observed
03 6
47 i7
8-11 40
12-15 54
16-19 59
20-23 75
24-27 T
28-31 35
32-35 12
36-39 8
40-43 i
Totaf number of observations = 424

Frequency of Observations

80

70

60

50 -

40

30

20

10

7] Figure 1.5 A bar graph of the aphid data

4-7 811 12-15 16-19 2023 24-27 2B-31 32-35 36-39 4043 . of Example 1.4b. An example of a bar
Qbserved Number aof Aphids per Plant graph for grouped discrete, ratio-scale data.

. (Lo



les (continued)

EXAMPLE 1.5 Determinations of the amount of phosphorus in leaves. A frequency table of

continuous data.

Frequency

Cumudative frequency

.Pho&phoms (L.e; number of  Starting with  Starting with

mg/y of feaf) determinations)  low values high values
8.15-8.25 2 2 130
B.25~-8.35 b 8 128
8.35-8.45 8 16 122
8.45-8.55 il 21 114
8.55-8.65 17 a4 103
8.65-8.75 17 61 86
8.75-8.85 24 85 69
8.85-8.95 18 103 45
8.95-9.05 13 116 27
9.05-9.15 14 i26 i4
9.15-9.25 4 130 4

Total frequency = 130

Frequency
- r )
w < o %
i

—_—
<

82 8385485 8687888598089.1718.2
Phosphorus (mg/g of leaf)

Figure 1.6a A histogram of the leaf
phosphorus data of Example 1.5, An

example of a histogram for continuous data.




1.3.2 Numerical Descriptive Methods

In addition to summarizing a variable graphically to ook

for patterns, it's also useful to summarize it numerically,

to capture most of the information it contains in fewer
than n numbers.

People have found two main tvpes of numerical summary
useful: measures of center (or central tendency), and
measures of spread (or dispersion, or variability).

Measures of center.| The three most useful are the mean,
the median (and other quantiles, or percentiles), and
the mode.

The mean is, I'm sure, an old familiar object: with a variable
like butterfly wing length above (n = 24)

4.4, 3.6, 4.1, oo, 4.6, - 3.9
Y1, Y2, Y3, se g Y23, Y24
yl: y2s y3r L y?'z‘.—lr yn

to get the mean (for a variable y, let's call the mean y) 1
just add up all the data values and divide by how many
there are:

4A44+364+414+.--4+40+39 95
T30+414+--+40+39 95 . Joccm (1)
24 24

Y =

Symbolically, using the idea of summation notation, this
can be written more succinctly as

7 Y1+ y2+y3s+ -+ Yn-1+ Un

n

1 1
= ;(y1+y2—|—---+—i—yn):—‘"52yi.- (2)
=1 '

- @




Measures of Center

It turns out that the mean has the graphical interpretation
of the center of gravity of the data: if you visualize the
histogram of the variable y as made of bricks that are
sitting on a number line made of plywood, which in turn is
put on top of a saw-horse, the mean is the place where
the histogram would exactly balance.

The median 4 of a column of numbers (y1,...,yn) is defined
to be the middie value in the list in which (y1,... ,yn) has
been sorted from smallest to largest — if n is an odd

number this is uniquely defined; if n is even there is no
single middle number and people define the median to be
the mean of the two middle values.

By examining the sorted list of the butterfly wing lengths
on page 12 above (n = 24), you can see that the middle
two numbers are both 4.0, so the median g of that variable
is 4.0cm (not very far from the mean in this case).

Since histograms graphically display the frequency
distribution of a variable, the graphical interpretation of
the median must be that it's the place where half of the
data is to the left of that place and half to the right in

the histogram.

The median is a special case of the general idea of finding
places in the distribution where a particular percentage of
the data is to the left of that place — these are called
quantiles or percentiles.

By definition the median is the 50th percentile, but it’s
also useful sometimes to look at other percentiles — for
example, the 25th percentile (also catled the first quartile)
is the place where i of the data is to the left of that place,
and similarly the 75th percentile (the third quartile) is the
place where £ of the data is to the right of that place.
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Mode

Median,

The mode is defined to be the point of highest frequency
in the distribution of a variable, so by definition its graphical
interpretation is just the highest point in the histogram
(Note: there are many different possible histograms for
the same set of data [as a function of how wide you
choose the bars to be and where you decide to start the
first bar], and the mode is sensitive to these choices).

Some distributions have more than one mode — these are
called muitimodal (a common special case is two modes,
which defines a bimodal distribution), and distributions with
only one mode are therefore unimodal; usually
multimodality means that there are two or more subgmups
in the sample that should perhaps be studied separately.

@ )
] W
Mean -7 ™ Mode Mode N\ Mode
Median Mean Median
| | I |/f\
Mode~" Mean Mean Mode

Figure 3.2 Frequency distrzbutions showing measures of central tendency. Values of the
variable are along the abscissa (horizontal axis), and the frequencies are along the ordinate
(vertical axis). Distzibutions {a) and (b) are symmetrical, (¢} is positively skewed, and
(d) is negatively skewed. Distabutions (a), (c), and (d} are unimodal, and distribution

(b)Y is bimedal. In a unimodal asymmetric distribution, the median lies about one-third -
the distance between the mean and the mode.*

Distributions that are composed of mirror images to the
left and right of a central folding point are called
symmetric; combining two of these terms, a fairly common
distributional shape is symmetric unimodatl (like Figure
(a) above) — for such distributions the mean, median and
mode all coincide with the point of symmetry, which
makes choosing a measure of center for them easy.




Analysis

Sensitivity

Outliers;

EXAMPLE 33 Life expeciancy for fwe hypothetical species of birds in captivity.
Species A Species B
X; {mo} X; (mo)
34 34
36 36
37 37
39 39
40 40
41 : 41
42 42
43 43
7% 44
45
n=09 n =10
M= Xprnp = Xown M= Xpnp = Xaaron
= X5 =40 mo = X535 =40.5 mo
X =43.4 mo X =401 mo

The parts of a distribution to the left and ﬁf“égm Of the
center are called the left and right tails of the
distribution, respectively.

Notice in the data set for species A above that the largest
observation in the right tail (a life expectancy of 79
months (mo)) is much larger than the others — data values
in either tail that are far from the bulk of the data are
called outliers.

You can see that with data set A the mean has been quite
strongly influenced by the outlier (the median is 40 mo,
and the mean has been pulled by the outlier all the way up
to 43.3 mo) — this observation (the fact that the mean is
more sensitive to outliers than the median) is part of a
general phenomenon.

- We'll see examples later of what to do about outliers —
one of the simplest ways to address them is by means of
sensitivity analysis (repeat your main analyses with and
without the outliers and see if you get more or less the
same results — if so, great; if not, you have to think
harder about whether there’'s a good scientific reason to
discard the outliers).

S




sures of Spread

Measures of spread. | The two most useful are the
variance and the standard deviation (SD).

To see what's going on in measuring the spread of a list of
‘numbers, consider the tiny fake data set with n = 3 values

(y1,... ,un) = (1,2,9), whose mean g is 4 and whose
histogram looks like this:
-3 gt
< §
AR ¥ .

BT .

S v l ! { Ea—
v or 2 ¥ &6 2 0
We might intuitively define the spread of a list of numbers

to be the typical amount by which the numbers differ from
their center; how should this idea be quantified?

i

One way might begin by calcutating the deviations (y; — v)
of each observation y; from the mean y:

. - i
f \1, F‘_‘ f\_ilg"mc“f’ \1“"‘7 E“Lf- 1;-2.\

- | ;Zi - O L IRt
. ) " S AN I L BUSS Y

The deviations represent the amount by which each
number differs from the center (as measured by the
mean); all we need to finish off the calculation is to
summarize them (to get the “typical” deviation).

N



Variance

One way to summarize the deviations would be to take
their mean, but this doesn’t work: with the example above
yvou get O, and in fact by the way the mean is defined you
would always get 0 no matter what the numbers (yi,... ,yn)
are (it's not hard to prove this algebraically) — the
problem is cancellation of + and — deviations.

One way to avoid cancellation is to take the mean of the
absolute values of the deviations — this is the
mean absolute deviation (MAD), which here comes out
Eiihs ol 4H"9 4 — 3+§+5 = 3.3: this does seem to correspond
to ‘i:he typical length of the arrows in the sketch above.

For technical reasons having to do with calculus and
theoretical statistics, the MAD is not used much; the two
most frequently used measures of spread are based on the
other way to avoid cancellation: taking (more or less) the

mean of the squares of the deviations.

Again for technical reasons (which will be explained later),
when the data set you're measuring the spread of is a
(random) sample from a population, in calculating this
“mean’” people prefer to divide not by the number of data
values n but by (n— 1); the resulting quantity is ca!led the
(sample) variance, usually abbreviated s°

82.:(91_9)2‘!‘-»-"‘(%1_9) :n~1z(yi_g)2. (3)

n— 1

Thinking of the little fake data set as a sample, the
(sample) variance comes out

(1-4)*+ (23 41)2 +(0-4)° 34245 = 19, whichi seems too big as
a measure of the typical Iength of the arrows in the sketch
above, and moreover the units of the variance are wrong:

if the data values were measurements of money ($, say),

the variance would come out in $2.




Deviation

Standard

Both of these problems can be solved by taking the square
root of the variance, which is called the standard deviation
(SD for short), usually abbreviated s; for the sample this is

SZ\/(y1“§)2+--.+(yn“§)2z 1 i(yi_g')zg (4)

n — 1 n — 1 4

With the little fake data set the sample SD comes out
s = +/19 = 4.4, which seems about right as a sumimary of
spread for this list of numbers.

Samples and populations.| Suppose that the data set

(y1,...,yn) is a random sample of size n from a population
of N values, and to keep from getting confused between the
population and the sample let's call the population values
(Yi,...,Yn); we've already agreed to call the sample mean,
variance and SD 7, s® and s, respectively.

With this notation it would be natural to call the
population mean, variance and SD Y, 52 and 9,
respectively, but instead people typically use Greek letters
and write u for the population mean, o2 for the population

o variance, and o for the population SD.

ﬁ 1 TAnpLE
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Graphical Interpretation of the SD

In this setup, to make things even more mysterious, people
define the population variance and $D not by dividing by
(N —1) but by N:

1 N | 1
xﬁijmw)? and o = —N-Ejmwm? (5)
j==1 7==1

The reason for all of this mystery will be explained later
when we talk about sampling distributions; for now it's
enough to notice that when n is large it hardly matters in
practice whether you divide by n or (n - 1) in calculating the
sample SD s.

Graphical interpretation of the SD. | SDs are a pain to
compute by hand or with a calculator, and it's easy to
make mistakes when doing so, so it would be good to have
a simple way to roughly approximate the SD of a list of
numbers by looking at its histogram — this is provided by
something called the Empirical Rule.

Empirical Rule: For almost any list of numbers, if you
start at the mean and go one SD either way, vou'll
capture about 2 of the data (the theoretical figure is 68%);
it you start at the mean and go 2 SDs either way you'll
get most of the data (the theoretical number to remember
is 95%); and if you start at the mean and go 3 SDs
either way you'll get almost all of the data (the theoretical
figure is 99.7%).

Looking back at the butterfly wing length example, for
instance (the sorted data values are on page 12, and the
histogram is on page 13; recall that the mean is about 4
cm), you can see that if you guessed the SD was about 0.1
cm that would be too small (since starting at 4.0 and

- &
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going 0.1 either way, down to 3.9 and up to 4.1, would
only get you half of the data), and if you guessed s == 0.5
that would be too big, because the interval from ( mean —
1SD)x(40——05)m35to{mean+15Q)m(
4.0 + 0.5 ) = 4.5 includes all of the data: a bit of trial
and error should convince you that the SD is around 0.3
cm, and actually computing it yields s = 0.29 cm.

Using the normal distribution descriptively. j There's a

distribution that's quite spectal in many ways (you've
probably already met it) — it's the symmetric unimodal
distribution called the normal (or Gaussian) distribution.

Actually there's not just one normal distribution, there are
infinitely many of them: for any values y and s you can
imagine for the mean and SD (respectively) of a
single-variable data set (thought of as a sample from a
population), there's a normal distribution with that mean
and SD.

Looking at the histogram of the butterfly wing length
data (page 13), which is roughly symmetric and unimodal,
- you can imagine someone approximating it with a smooth
curve drawn through or near the tops of the bars — the
curve (or function) corresponding to the normal
distribution with mean y = 4.0 cm and SD s = 0.29 cm
has the equation (with y as the values of the variable
: running along the horlzontal axis)

1 (y — )
oo [252]
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The

The idea behind using the normal distribution (also
called the normal curve) descriptively is as follows.

Normal Curve

Suppose ycju wanted to answer a question like “What
percentage of the butterflies in this data set had wing
lengths smaller than 3.56 cm?”

The exact way to answer this question is just to count how
many butterflies satisfied this criterion (2, as it turns out:
the ones with wing lengths of 3.3 and 3.5 cm) and see
what percentage this is of the total sample size; here, the
answer would be 2 = 0.083 = 8.3%.

To use the normal curve to get an approximate answer to
this same guestion, we can reason as follows.

All histograms express frequency information, but it turns

out that there are three different possible choices of the

vertical axis for histograms, and each choice expresses the
“idea of frequency in a different way.

The histogram back on page 13 was a raw frequency
histogram — the vertical axis just plotted the raw
frequencies (counts) of data values in each bar.

Another idea would be to divide the raw frequencies by the
sample size, to produce relative frequencies, and plot
them on the vertical scale instead — this would give you a
relative frequency histogram, which would have the same

shape as the raw frequency picture (techmcally speaking,
moving from raw to relative frequency the vertical axis has
undergone a linear change of scale, and that has no effect
on the shape of the basic distribution).




Normal Curve (continued)

- The

There's a third way to plot histograms: to draw the
vertical axis on what's called the density scale, which is
chosen so that

(a) relative frequency is expressed by computing the area
~under the histogram or curve, and

(b) the total area under the histogram or curve is therefore
100% (or 1).

When considered as an approximation to a histogram, the
- normal curve (as it turns out) is (by definition) drawn on
the density scale, so it can be used to approximate
relative frequencies (like the percentage of the data
values less than 3.56) by working out the area to the left
of 3.56 under the normal curve with the same mean and
SD as the data.

@ : | How do you work out the area under a normal curve?

A: | Formally speaking, the calculus technique of
integrating the function in equation (6) from —oo to 3.56
will give you the right answer, but it turns out that the
Gaussian density function in (6) cannot be integrated in
closed form (it has no anti-derivative), so the back-up
technique is called numerical integration: you use
numerical (rather than symbolic) methods to make a table
in which the area under the normal curve to the left of some
number z is computed for lots of different choices of :z.

Q: | But you said earlier that there isn't just one normal
curve, there are infinitely many of them, one for each
choice of the mean and SD, so with this approach wouldn’t
you have to create infinitely many tables?

Lo (3
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Normal Curve (continued)

A: [ Ah, ves, embarrassing but good qgestion; to rescue
this idea we have to appeal to a remarkable fact about the
normal distribution:

Fact: | Every normal curve (no matter what it% mean and

SD is) satisfies the (theoretical version of the) Empirical

rule not just approximately but exactly: in other words, if

vou start at the mean and go 1 8D either way, the area

under any normal curve will be 68%; 2 SDs either way,
95%: and 3 SDs either way, 99.7%.

T his means that it's enough to make a table for only one
normal curve — by convention, it's called the
standard normal curve — and then relate whatever normal
curve you're interested in back to the standard curve.

1| What did people choose for the mean and 5D of the
standard normal curve?

A | Well, the mean could be anywhere from —oo to oo, and
the simplest humber between these extremes is probably
0, and the SD could be anywhere from 0 to oo (why can't
an SD be negative?), and the simplest number in this
range is probably 1, so the standard normal curve (by
definition) has mean 0 and SD 1.

T he table on the next two pages (Table A—2 in T&T, also
available on the inside back cover of the book) gives areas
to the left of a bunch of places z under the standard normal
curve; for example, to work out the area to the left of —1.27
you look in the row marked —1.2 and the column marked
0.07 (because ignoring the minus sign and putting the 1.2
and the 0.07 together you get 1.27), and the table says the
area is 0.1020, which could also be expressed as 10.20%
(in practice this would typically be rounded to 10.2% or
10%, because the normal curve is only being used as an
approximation to the actual histogram).




(continued) Cumulative Area from the LEFT

NOTE: For values of z above 3.49, uge 0.9999 for the area.
*Use these commen values that result from interpolation:

Z 5core Area
1.645 0.9500
2,575 0.9950

-
-l
_—y
-

Commeon Critical Values

Confidence  Critical
Level Value
0.90 1.645
.95 1.96
0.99 2.575



-Standard Normat (2) Distribution: Cumulative Area from the LEFT

z .00 R} 02 03

.04

05

06

07

08

09

—0.0 5000 4960 4920  .4880

0721

1949

3974

4761

0708

1522

3936
P

4721

NOTE: For values of z below —3.49, use 0.0001 for the area.
#*Use these common values that result from interpolation:

Z score Area

—1.645 0.0500 -«

—2.575 00030 =

|~




The Normal Curve (continued)

JQ: The table only gives areas to the feft of z under the

standard normal curve; what if I want the middie area
between —z and 4z, or the area to the right of 27

Al You can use two basic facts about the normal curve té
work out any other kind of area you want:

e Since all normal curves are (by definition) drawn on the
density scale, the total area under any normal curve is
100% (or 1), and

e All normal curves are symmetric around their means.

For example, to work out the area between —1 and -+1
under the standard normal curve, this corresponds to going 1
SD either way from the mean (0), so we know from the
theoretical figure in the Empirical Rule that the answer
should be 68%.

Reasoning from the table, you can look up the area to the
feft of —1 and get 0.1587; by symmetry the area to the
right of 4+1 must also be 0.1587; and because the total

' area is 1 the area in the middie must be
1 —2(0.1587) = 0.6826, which we might express as 63.26%
and which would be rounded to 68%:

 9}§&}6;
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