Regression (Lecture #17)

- **y** = tail length, **x** = wing length
- Regression line: slope = \(\frac{s_y}{s_x} \)
- Best line for predicting **y** from **x**?
- Gauss (~1800)
- Francis Galton (1890)

Example:

1. **n = 1050**
2. **ht father**
3. **ht sons**
4. **n = 1050**

R - 25 (Eq. 17.21)

- Slope of regression line:
 \[b_1 = \frac{s_y}{s_x} \]
- Equation of regression line:
 \[\hat{y} = \beta_0 + \beta_1 x \]
- Predicted **y** value
 \[\beta_0 = \bar{y} - \beta_1 \bar{x} \]

Care 2nd time

Care 1st time

L-217: jump example
\[
\begin{bmatrix}
1 & 100 \\
2 & 94 \\
3 & 98 \\
50 & 5 \\
\end{bmatrix}
\]

Gauss

\[
\frac{1}{n} \sum_{i=1}^{n} [Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2
\]

- Find \((\hat{\beta}_0, \hat{\beta}_1)\) to minimize \(\frac{1}{n} \sum_{i=1}^{n} [Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2\)
- Result is least squares estimates

L-248 - Inference about slope

Inferential summary

<table>
<thead>
<tr>
<th>Unknown pop. quantity of main interest</th>
<th>(\hat{\beta}_1) = POP slope for predicting</th>
</tr>
</thead>
<tbody>
<tr>
<td>estimate</td>
<td>(\hat{\beta}_1 = 0.77 \text{ cmHg/cMWL})</td>
</tr>
<tr>
<td>S.E. (S.E.)</td>
<td>(\hat{\beta}_1 = 0.14 \text{ cmHg/cMWL})</td>
</tr>
<tr>
<td>95% CI</td>
<td>(\hat{\beta}1 \pm t{n-2,0.95} \text{ S.E.} (\hat{\beta}_1) = (0.40, 1.08))</td>
</tr>
</tbody>
</table>
FACTS

1. $E_{i i d} \left(\beta_i \right) = \beta_i$,

 "given"

2. $S_{E_{i i d}} \left(\beta_i \right) = S_{\hat{y} | x}$

 where

 $S_{\hat{y} | x} = \frac{S_y}{\sqrt{n-1}} \sqrt{1 - r^2} \cdot \sqrt{\frac{n-2}{n-2}}$

 residual = root mean squared error

 So

 $\delta_{\hat{y} | x} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n-2} e_i^2}$

 squared error

 is the regression practically useful?

 2 ways to answer:

 1. r^2, recall variance $V(y) = S_y^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} (y_i - \bar{y})^2$

 in regression $y = \hat{y} + \epsilon$, so $V(y) = V(\hat{y} + \epsilon)$

 $V(\hat{y} + \epsilon) = V(\hat{y}) + V(\epsilon)$

 so $r^2 = \frac{V(\hat{y})}{V(y)} = \%$ of variance in Y associated with regression of Y on X

 - want r^2 to be large

 2. $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

 a. ignore x or don’t know x

 predict y anyway - best prediction is $\hat{y} = \bar{y}$

 give or take for s_y

 b. use x to predict y, best estimate is

 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$; give or take for this \hat{y} is smaller
If scatterplot looked like this, simple linear regression not good.

This is a residual plot.

Good

Bad