Sample size determination

Descriptive methods

Representative sampling =

Describe: *E(I)*

Sample: *N* =

Data observed (*t*):

- 3.3
- 3.5
- 3.6
- 3.9
- 4.1
- 4.4

Variance: *s*^2* =

Mean: *μ* =

Standard deviation: *σ* =

Measurement 67
raw frequency histogram

only 3 bars

value

3.2 3.4 3.5 3.6

4.5

raw. (count)

Gaussian dist.

no normal curve

wings length (cm.)

C. F. Gauss
(1790 - 1840)

A. de Moivre
(1710)

eye color

blue brown

eye color

BR BL BR BL

n = 100

for each cell

brown blue

value freq.

brown 36

blue 64

n=100

By graph

BR: 36

BL: 14

BL: 14
<table>
<thead>
<tr>
<th>vibe</th>
<th>exuv</th>
<th>vibe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 row for each nest (e.g. bar graph)

pigmentation

solid block

f. speak.

1 row for each sunfish

pups (litter size)

4

5

4

3

1 row for each litter

quant. disc. ratio

b.g. -> hist.
Aphids

<table>
<thead>
<tr>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

1 row for each clover plot

\[n = 424 \]

2 var disc ratio

bg hist

12 bars

Good hist.

Bad hist.

42 bars (bed) too jittery

Just right # bars

Too many

Too few bars

60