Discussion Section
week of 15-19 Oct 18

R - 29

\[N = 3(n) \]

\[5 \pm 0.16 \]

\[6.7\% = 0.0668 \]

\[1.53 \text{ units} \]

\[1.77 \text{ mean} \]

\[1.77 - 1.53 = 0.24 \]

\[\frac{0.24}{0.16} = 1.5 \]

\[\frac{0.16}{0.16} = 0.16 \]

\[1.14 - 1.53 = -0.39 \]

\[\frac{-0.39}{0.16} = -2.44 \]

\[3 (c) \]

\[0.16 \div 38\% = 0.416 \]

\[0.16 \div 0.08 = 2.0 \]

\[0.16 \div 0.16 = 1 \]

\[1.61 - 1.53 = 0.08 \]

\[1.45 - 1.53 = -0.08 \]

\[1.53 - 1.61 = -0.08 \]

\[-0.5 \text{ to } 0.5 \]

\[0.5 \text{ standard units} \]

\[(159)(0.0073) = 1.1607 \]

\[\approx 1 \text{ fold} \]
Experimental design:

Case study: psychology

Get 120 rats, put them all in T group, see what cortex weights result:

1. No companion group
2. Try to make T groups as similar as possible in all relevant ways except for the distinction
\[Z = \text{potential confounding factor} \]
\[\text{PCF} \]

3 \text{rd} variable, not \(\bar{X} \), not \(\bar{Y} \) but capable of confusing (confounding) us about whether changes in \(\bar{X} \) cause changes in \(\bar{Y} \)

in psychology case study

an important \(\bar{X} \) is genetic background

\[\text{unsampled sample} n \]
\[\text{sampled sample} n' \]

\[\text{p-p. P} \]

simplest way to achieve goal \(\bullet \): assign experimental subjects to \(\text{\textcircled{1}}, \text{\textcircled{2}} \) at random.
4 (5)

(time)

1 = Y
0 = N

(longitudinal)
(repeated-measures)

each person serves as his/her own control

cannoting acupuncture

0+ relief?

1 row

for each person

near 0% mean 30/31 = 97%